Molecular basis of cranial suture biology and disease: Osteoblastic and osteoclastic perspectives.

نویسندگان

  • Maureen Beederman
  • Evan M Farina
  • Russell R Reid
چکیده

The normal growth and development of the skull is a tightly regulated process that occurs along the osteogenic interfaces of the cranial sutures. Here, the borders of the calvarial bones and neighboring tissues above and below, function as a complex. Through coordinated remodeling efforts of bone deposition and resorption, the cranial sutures maintain a state of patency from infancy through early adulthood as the skull continues to grow and accommodate the developing brain's demands for expansion. However, when this delicate balance is disturbed, a number of pathologic conditions ensue; and if left uncorrected, may result in visual and neurocognitive impairments. A prime example includes craniosynostosis, or premature fusion of one or more cranial and/or facial suture(s). At the present time, the only therapeutic measure for craniosynostosis is surgical correction by cranial vault reconstruction. However, elegant studies performed over the past decade have identified several genes critical for the maintenance of suture patency and induction of suture fusion. Such deeper understandings of the pathogenesis and molecular mechanisms that regulate suture biology may provide necessary insights toward the development of non-surgical therapeutic alternatives for patients with cranial suture defects. In this review, we discuss the intricate cellular and molecular interplay that exists within the suture among its three major components: dura mater, osteoblastic related molecular pathways and osteoclastic related molecular pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spermatogonial Stem Cells: Biology, Isolation, Culture, Characterization, and Practical Perspectives

Spermatogonial stem cells (SSCs) also known as germ stem cells (GSCs) are the basis of spermatogenesis process in the testis. Furthermore, they are also valuable cells with different applications in developmental biology, transgenesis technology, and clinic. Understanding the new findings related to the cell and molecular biology of SSCs and the methods for isolation and maintenance of these ce...

متن کامل

BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients

The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells deri...

متن کامل

Roles of Renin-Angiotensin System in the Regulation of Prostate Cancer Bone Metastasis: A Critical Review

Mestastatic prostate cancer cells (MPCCs) frequently metastasize to bone, which is a “favorite soil” for colonization and proliferation of MPCCs. Prostate cancer bone mestastasis is tightly associated with tumor-induced bone lesions, most commonly caused from the etiological imbalance between osteoblastic bone formation and osteoclastic bone resorption, and from the anti-tumor immune response. ...

متن کامل

Craniosynostosis: genes and mechanisms.

Enlargement of the skull vault occurs by appositional growth at the fibrous joints between the bones, termed cranial sutures. Relatively little is known about the developmental biology of this process, but genetically determined disorders of premature cranial suture fusion (craniosynostosis) provide one route to the identification of some of the key molecules involved. Mutations of the MSX2, FG...

متن کامل

Bone morphogenetic protein is required for fibroblast growth factor 2-dependent later-stage osteoblastic differentiation in cranial suture cells.

BACKGROUND Understanding the pathophysiological process of calvarial bones development is important for the treatments on relative diseases such as craniosynostosis. While, the role of fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) and how they interacted in osteoblast differentiation remain unclear. METHODS we digested bone fragments around the coronal and sagittal sutur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & diseases

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2014